Kolmogorov Books
Selected Works of A.N.Kolmogorov : Mathematics and Mechanics, Volume 1
Edited by V. M. Tikhomirov
Selected Works of A.N.Kolmogorov : Probability Theory and Mathematical Statistics, Volume 2
Edited by A. N. Shiryayev
Selected Works of A.N.Kolmogorov : Information Theory and the Theory of Algorithms, Volume 3
Edited by A. N. Shiryayev
Mathematics of the 19th Century: Constructive Function Theory According to Chebyshev,
Ordinary Differential Equations, Calculus of Variations, and Theory of Finite Differences
Edited by A. N. Kolmogorov and A. P. Yushkevich
Mathematics of the 19th Century: Geometry, Analytic Function Theory
Edited by A. N. Kolmogorov and A. P. Yushkevich
Mathematics of the 19th Century: Mathematical Logic, Algebra, Number Theory, Probability Theory
Edited by A. N. Kolmogorov and A. P. Yushkevich
MATHEMATICS: Its Content, Methods and Meaning
A. D. Aleksandrov, A. N. Kolmogorov, M. A. Lavrent'ev (Editors)
Introductory Real Analysis
A. N. Kolmogorov and S. V. Fomin
Elements of the Theory of Functions and Functional Analysis
A. N. Kolmogorov and S. V. Fomin
Andrei Nikolaevich Kolmogorov. Biography.
by V. M. Tikhomirov
Kolmogorov Remembered
by Leonid A. Bassalygo, Roland L. Dobrushin, Mark S. Pinsker
Kolmogorov, Andrey Nikolayevich
an article from the Encyclopædia Britannica
Automata and Life (1961)
by A. N. Kolmogorov
Prepared for publication and edited by N. G. Khimchenko (Rychkova)
(Home Page).
N. G. Khimchenko 
How it was...
Automata and Life (text)
A. N. Kolmogorov 
Automata and Life (theses for his talk)
V. M. Tikhomirov 
A few words on topic: "Kolmogorov and cybernetics"
V. A. Uspensky 
Kolmogorov, as I remember him
A. N. Kolmogorov  Mathematics  A Science and Profession
Collected and prepared for publication by G. A. Galperin
Published by Nauka, Moscow, 1988
A. N. Kolmogorov  Mathematics and its Historical Development
Edited by V. A. Uspensky, collected and prepared for publication by G. A. Galperin
Published by Nauka, Moscow, 1991
See also the following Russian publications about A. N. Kolmogorov:
More
photographs of A. N. Kolmogorov
at the Kolmogorov School web site
and at the
Andrey Kolmogorov page of the
History of Mathematics Archive.
Click on any picture to enlarge.
What Is Mathematics?: An Elementary Approach to Ideas and Methods
by Richard Courant and Herbert Robbins,
Revised by Ian Stewart
Published 1996 by Oxford University Press (2nd Edition)
Translated into Russian by A. N. Kolmogorov and with introduction by A. N. Kolmogorov
Kolmogorov in Perspective
Edited by
A. N. Shiryaev / Published September 2000 by
American Mathematical
Society
Description
The editorial board for the History of Mathematics series has selected for
this volume a series of translations from two Russian publications,
Kolmogorov in Remembrance and Mathematics and its Historical
Development. This book, Kolmogorov in Perspective, includes
articles written by Kolmogorov's students and colleagues and his personal
accounts of shared experiences and lifelong mathematical friendships.
Specifically, the article, "Andrei Nikolaevich Kolmogorov. A Biographical Sketch
of His Life and Creative Paths" by A. N. Shiryaev, gives an excellent personal
and scientific biography of Kolmogorov. The volume also includes the following
articles: "On A. N. Kolmogorov" by V. I. Arnol'd, "In Memory of A. N.
Kolmogorov" by S. M. Nikol'skii, "Remembrances of A. N. Kolmogorov" by Ya. G.
Sinai, "The Influence of Andrei Nikolaevich Kolmogorov on My Life" by P. L.
Ul'yanov, "A Few Words on A. N. Kolmogorov" by P. S. Aleksandrov, "Memories of
P. S. Aleksandrov" by A. N. Kolmogorov, "Newton and Contemporary Mathematical
Thought" by A. N. Kolmogorov, and an extensive bibliography with the complete
list of Kolmogorov's worksincluding the articles written for encyclopedias and
newspapers. The book is illustrated with photographs and includes quotations
from Kolmogorov's letters and conversations, uniquely reflecting his
mathematical tastes and opinions.
Copublished with the London Mathematical
Society. Members of the LMS may
order directly from the AMS at the AMS member price. The LMS is registered with
the Charity Commissioners.
Contents
Mathematics as a Profession
by A. N. Kolmogorov
3rd Russian Edition published by the Moscow State University Publ. (1960)
Full text (in Russian) is available from the web site
http://www.mccme.ru/freebooks/ilib.htm.
Here it is in DjVu format http://www.mccme.ru/freebooks/djvu/klassik/kolmogorov.djvu.
Download FREE DjVu Viewer from http://www.djvu.com/.
Foundations of the Theory of Probability
by A. N. Kolmogorov
English translation published 1950 by Chelsea Publishing
The translation is edited by Nathan Morrison
Originally published 1933 in German by Springer, Berlin as
"Grundbegriffe der Wahrscheinlichkeitrechnung"
Most recent 3rd Russian Edition was published 1998 by Phasis, Moscow
Full text of the 1st Russian Edition (1936) is available at
www.probabilityandfinance.com web page maintained by
Vladimir Vovk who was the very last Ph.D. student of A.N.Kolmogorov
Here it is in PDF format
http://www.probabilityandfinance.com/misc/grund.pdf (2.87 MB)
or zipped postscript format http://www.probabilityandfinance.com/misc/grund.zip
(2.93 MB).
Full text of the 2nd Updated Russian Edition (1974) is available at
http://www.biometrica.tomsk.ru/kolmogorov/kolmogorov_100.htm web page maintained by
Vassili Leonov.
Here it is in DjVu format
http://www.biometrica.tomsk.ru/kolmogorov/kolmogorov.djv.
Download FREE DjVu Viewer from http://www.djvu.com/.
Contents
 Elementary Theory of Probability:
1.1 Axioms
1.2 The relation to experimental data
1.3 Notes on terminology
1.4 Immediate corollaries of the axioms; conditional probabilities; Theorem of Bayes
1.5 Independence
1.6 Conditional probabilities as random variables; Markov chains
 Infinite Probability Fields:
2.1 Axiom of continuity
2.2 Borel fields of probability
2.3 Examples of infinite fields of probability
 Random Variables:
3.1 Probability functions
3.2 Definition of random variables and of distribution functions
3.3 Multidimensional distribution functions
3.4 Probabilities in infinitedimensional spaces
3.5 Equivalent random variables; various kinds of convergence
 Mathematical Expectations:
4.1 Abstract Lebesgue integrals
4.2 Absolute and conditional mathematical expectations
4.3 The Tchebycheff inequality
4.4 Some criteria for convergence
4.5 Differentiation and integration of mathematical expectations with respect to a parameter
 Conditional Probabilities and Mathematical Expectations:
5.1 Conditional probabilities
5.2 Explanation of a Borel paradox
5.3 Conditional probabilities with respect to a random variable
5.4 Conditional mathematical expectations
 Independence; The Law of Large Numbers:
6.1 Independence
6.2 Independent random variables
6.3 The law of large numbers
6.4 Notes on the concept of mathematical expectation
6.5 The strong law of large numbers; Convergence of a series
 AppendixZeroorone law in the theory of probability
 Bibliography
 Notes to supplementary bibliography
 Supplementary bibliography
Limit Distributions for Sums of Independent Variables
by B. V. Gnedenko and A. N. Kolmogorov
Translated from the Russian, annotated, and revised by K. L. Chung
With Appendices by J. L. Doob and P. L. Hsu
Published by AddisonWesley, 1954, 1968 (Second Edition)
The Kolmogorov Legacy in Physics: A Century of Turbulence and Complexity (Lecture Notes in Physics, 642)
Edited by Roberto Livi and Angelo Vulpiani
Hardcover: 246 pages; Publisher: Springer Verlag; (February 2004) ISBN: 3540203079
English translation from the French edition L'héritage de Kolmogorov en physique published September 2003 by Belin, Paris
Table of Contents
Kolmogorov Pathways from Integrability to Chaos and Beyond 3
From Regular to Chaotic Motions through the Work of Kolmogorov 33
Dynamics at the Border of Chaos and Order 61
Kolmogorov's Legacy about Entropy, Chaos, and Complexity 85
Complexity and Intelligence 109
Information Complexity and Biology 123
Fully Developed Turbulence 149
Turbulence and Stochastic Processes 173
ReactionDiffusion Systems: Front Propagation and Spatial Structures 187
SelfSimilar Random Fields: From Kolmogorov to Renormalization Group 213
Financial Time Series: From Batchelier's Random Walks to Multifractal 'Cascades' 229
L'héritage de Kolmogorov en physique
Edited by Roberto Livi and Angelo Vulpiani
Published September 2003 by Belin, Paris
Table des matières (Contents)
Préface Yakov G. Sinai
Introduction Roberto Livi et Angelo Vulpiani
Première partie : CHAOS ET SYSTÈMES DYNAMIQUES
 Chapitre 1 LE CHEMINEMENT DE KOLMOGOROV DE L'INTÉGRABILITÉ AU CHAOS ET AUDELÀ
Roberto Livi, Stefano Ruffo, Dima Shepelyansky
1 Une perspective générale
2 Deux degrés de liberté : l'application standard de Chirikov
3 De nombreux degrés de liberté : l'expérience numérique de Fermi, Pasta et Ulam
4 Seuils énergétiques
5 Spectres de Lyapounov et caractérisation de la dynamique chaotique
6 Ordinateurs quantiques et chaos quantique
Bibliographie
 Chapitre 2 DES MOUVEMENTS RÉGULIERS AUX MOUVEMENTS CHAOTIQUES À TRAVERS LE TRAVAIL DE KOLMOGOROV
Alessandra Celletti, Claude Froeschlé, Elena Lega
1 Introduction
2 Mouvements stables
2.1 Systèmes intégrables et non intégrables
2.2 Théorie des perturbations
2.3 Le théorème de KolmogorovArnoldMoser
2.4 La stabilité d'un modèle associé au problème des trois corps
3 Mouvements instables
3.1 Théorème de Nekhoroshev
3.2 Outils pour différencier le chaos de l'ordre
3.3 Représentation du réseau d'Arnold dans un modèle hamiltonien simple
Bibliographie
 Chapitre 3 DYNAMIQUE À LA FRONTIÈRE ENTRE L'ORDRE ET LE CHAOS
Arkady Pikovsky et Michael Zaks
1 Introduction
2 Suite de ThueMorse : un exemple non trivial de séquence symbolique complexe
3 Attracteurs à spectre fractal : du codage symbolique aux singularités des temps de retour
4 Les spectres fractals en hydrodynamique laminaire
5 Conclusion
Bibliographie
Deuxième partie : COMPLEXITÉ ALGORITHMIQUE ET THÉORIE DE L'INFORMATION
 Chapitre 4 ENTROPIE, CHAOS ET COMPLEXITÉ
Massimo Falcioni, Vittorio Loreto, Angelo Vulpiani
1 L'entropie en thermodynamique et en physique statistique
2 L'entropie dans la théorie de l'information
3 L'entropie dans les systèmes dynamiques
4 Complexité algorithmique
5 Complexité et information en linguistique, génomique et finances
5.1 Du jeu en bourse à l'estimation de l'entropie
5.2 Recherche d'informations pertinentes
5.3 Entropie relative et écart entre séquences
5.4 Compression de données et mesures de complexité
Bibliographie
 Chapitre 5 COMPLEXITÉ ET INTELLIGENCE
Giorgio Parisi
1 Complexité algorithmique
2 Quelques propriétés et paradoxes apparents de la complexité
3 La profondeur logique
4 Apprentissage par l'exemple
5 Apprentissage, généralisation et propensions
6 Une approche statistique des propensions
7 Une définition possible de l'intelligence
Bibliographie
 Chapitre 6 INFORMATION, COMPLEXITÉ ET BIOLOGIE
Franco Bagnoli, Franco Bignone, Fabio Cecconi, Antonio Politi
1 Notes historiques
2 Les contributions directes de Kolmogorov
3 Information et biologie
4 Les protéines : un exemple paradigmatique de complexité
Bibliographie
Troisième partie : TURBULENCE
 Chapitre 7 TURBULENCE PLEINEMENT DÉVELOPPÉE
Luca Biferale, Guido Beffetta, Bernard Castaing
1 Introduction
2 Théorie de Kolmogorov 1941
2.1 Symétries de NavierStokes
2.2 Anomalie dissipative
2.3 Loi des 4/5 et autosimilarité
3 Théorie de Kolmogorov 1962
3.1 Intermittence et loi d'échelle anomale
3.2 Cascade multiplicative
3.3 Approche multifractale
3.4 Tests sur les hypothèses de Kolmogorov
4 L'héritage de Kolmogorov sur la turbulence moderne
4.1 Universalité des fluctuations aux petites échelles
4.2 Turbulence anisotrope
Bibliographie
 Chapitre 8 TURBULENCE ET PROCESSUS STOCHASTIQUES
Antonio Celani, Andrea Mazzino, Alain Pumir
1 Introduction
2 Turbulence d'un scalaire passif
3 Le modèle de Kraichnan et ses prolongements
4 Du côté de la turbulence de NavierStokes
5 Conclusion
Bibliographie
 Chapitre 9 SYSTÈMES DE RÉACTIONDIFFUSION : PROPAGATION DE FRONTS ET STRUCTURES SPATIALES
Massimo Cencini, Cristobal Lopez, Davide Vergni
1 Introduction
2 Propagation de front dans l'équation de diffusion non linéaire
3 Systèmes de réactiondiffusion en physique, en chimie et en biologie
3.1 Systèmes de réactiondiffusion à multi composants
3.2 Systèmes d'advectionréactiondiffusion
Bibliographie
Quatrième partie : APPLICATION DE LA THÉORIE DES PROBABILITÉS
 Chapitre 10 CHAMPS ALÉATOIRES AUTOSIMILAIRES : DE KOLMOGOROV AU GROUPE DE RENORMALISATION
Giovanni JonaLasinio
1 Introduction
2 Bref historique
3 La spirale de Wiener, et les processus apparentés
4 Le groupe de renormalisation : idées générales
5 Le groupe de renormalisation : un point de vue probabiliste
6 Une propriété des champs aléatoires autosimilaires critiques
7 Structure multiplicative
8 Théorèmes limites et universalité des phénomènes critiques
9 Conclusion
Bibliographie
 Chapitre 11 SÉRIES TEMPORELLES FINANCIÈRES : DES MARCHES ALÉATOIRES DE BACHELIER AUX «CASCADES» MULTIFRACTALES
JeanPhilippe Bouchaud et JeanFrançois Muzy
1 Introduction
2 Caractéristiques universelles des séries temporelles des rendements
3 Des lois d'échelle multifractales aux processus en cascade
3.1 Comportement multiéchelle des rendements d'actifs
3.2 Le paradigme de la cascade
3.3 L'héritage de Kolmogorov, turbulence et finance
4 Marche aléatoire multifractale
5 Conclusion
Bibliographie
TURBULENCE: The Legacy of A. N. Kolmogorov
by Uriel Frisch
Published 1994 by Cambridge University Press
Description
This textbook presents a modern account of turbulence, one of the greatest challenges in physics.
The stateoftheart is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers.
Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life.
First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system.
Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries (including scaling transformations) which are broken by the mechanisms producing the turbulence and restored by the chaotic character of the cascade to small scales.
Considerable material is devoted to intermittency, the clumpiness of smallscale activity, which has led to the development of fractal and multifractal models.
Such models, pioneered by B. Mandelbrot, have applications in numerous fields besides turbulence (diffusion limited aggregation, solidearth geophysics, attractors of dynamical systems, etc).
The final chapter contains an introduction to analytic theories of the sort pioneered by R. Kraichnan, to the modern theory of eddy transport and renormalization and to recent developments in the statistical theory of twodimensional turbulence.
The book concludes with a guide to further reading.
The intended readership for the book ranges from firstyear graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers.
Contents
 Preface
 Introduction
 Why a probabilistic description of turbulence?
 Probabilistic tools: a survey
 Two experimental laws of fully developed turbulence
 The Kolmogorov 1941 theory
 Phenomenology of turbulence in the sense of Kolmogorov 1941
 Intermittency
 Further reading: a guided tour
 References
 Author index
 Subject index
(See also
Kolmogorov's turbulence definitions
from his famous K41 paper)
K41 A. N. Kolmogorov. Dokl. Akad. Nauk SSSR, 30;4:3201, 1941.
An English translation of this paper was recently republished (Translation by V. Levin):
A. N. Kolmogorov,
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.
Proc. R. Soc. Lond. A, 434:913, 1991
in the book
Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On (1991)
and in the book
Selected Papers on Adaptive Optics and Speckle Imaging (1994)
An Introduction to Kolmogorov Complexity and Its Applications
by Ming Li, Paul Vitanyi (Home page)
Published January 1997 by SpringerVerlag New York (2nd Edition)
See also
Kolmogorov Complexity and Solomonoff Induction Mailing List
and Special Issue on Kolmogorov Complexity,
The Computer Journal, Volume 42, Issue 4, 1999.
Edited by Alexander Gammerman (Home page), and Vladimir Vovk (Home page).
Kolmogorov Complexity: Sources, Theory and Applications
Generalized Kolmogorov Complexity
by Jürgen Schmidhuber (Home page)
Hilbert's 10th Problem (Foundations of Computing)
by
Yuri V. Matiyasevich (Home page)
Published October 1993 by MIT Press
See also Hilbert's Tenth Problem page
The Honor's Class: Hilbert's Problems and Their Solvers
by Benjamin Yandell
Published December 2001 by A K Peters, Ltd.
See also an original Hilbert's address in German
Mathematische Probleme
(Vortrag, gehalten auf dem internationalen MathematikerKongreß zu Paris 1900 )
Von David Hilbert
Mathematical Problems (in English)
(Lecture delivered before the International Congress of Mathematicians at Paris in 1900)
by Professor David Hilbert
Hilbert's Problems (in Russian) edited and with introduction by
P. S. Aleksandrov
See also Millenium Prize Problems
by Clay Mathematics Institute
The Millenium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time
by Keith J. Devlin
Published October 2002 by Basic Books
Russian Mathematicians in the 20th Century
Edited by Yakov Sinai
Published October 2003 by World Scientific
Description
In the 20th century, many mathematicians in Russia made great contributions to the field of mathematics. This invaluable book, which presents the main achievements of Russian mathematicians in that century, is the first most comprehensive book on Russian mathematicians. It has been produced as a gesture of respect and appreciation for those mathematicians and it will serve as a good reference and an inspiration for future mathematicians. It presents differences in mathematical styles and focuses on Soviet mathematicians who often discussed "what to do" rather than "how to do it". Thus, the book will be valued beyond historical documentation.
The editor, Professor Yakov Sinai, a distinguished Russian mathematician, has taken pains to select leading Russian mathematicians  such as Lyapunov, Luzin, Egorov, Kolmogorov, Pontryagin, Vinogradov, Sobolev, Petrovski and Krein  and their most important works. One can, for example, find works of Lyapunov, which parallel those of Poincaré; and works of Luzin, whose analysis plays a very important role in the history of Russian mathematics; Kolmogorov has established the foundations of probability based on analysis. The editor has tried to provide some parity and, at the same time, included papers that are of interest even today.
The original works of the great mathematicians will prove to be enjoyable to readers and useful to the many researchers who are preserving the interest in how mathematics was done in the former Soviet Union.
Golden Years of Moscow Mathematics
Edited by Smilka Zdravkovska and Peter L. Duren
Published January 1994 by
American Mathematical Society
Description
This volume contains articles on Soviet mathematical history,
many of which are personal accounts by mathematicians who
witnessed and contributed to the turbulent years of Moscow mathematics.
In today's climate of glasnost, the stories can be told with a candor
uncharacteristic of the "historical" accounts published under the Soviet regime.
An important case in point is the article on Luzin and his school,
based in part on documents only recently released.
The articles focus on mathematical developments in that era,
the personal lives of Russian mathematicians, and political events that shaped
the course of scientific work in the Soviet Union.
Another important feature is the inclusion of two articles on Kolmogorov,
perhaps the greatest Russian mathematician of the twentieth century.
The volume concludes with an annotated English bibliography
and a Russian bibliography for further reading.
This book appeals to mathematicians, historians,
and anyone else interested in Soviet mathematical history.
Contents
 A. P. Yushkevich  Encounters with mathematicians
 S. S. Demidov  The Moscow school of the theory of functions in the 1930s
 E. M. Landis  About mathematics at Moscow State University in the late 1940s and early 1950s
 B. A. Rosenfeld  Reminiscences of Soviet mathematicians
 V. M. Tikhomirov  A. N. Kolmogorov
(see also his
Biography)
 V. I. Arnol'd  On A. N. Kolmogorov
(see also
An Interview with Vladimir Arnol'd)
 M. M. Postnikov  Pages of a mathematical autobiography (19421953)
 B. A. Kushner  Markov and Bishop: An essay in memory of A. A. Markov (19031979) and E. Bishop (19281983)
 I. PiatetskiShapiro  Étude on life and automorphic forms in the Soviet Union
 D. B. Fuchs  On Soviet mathematics of the 1950s and 1960s
 A. B. Sossinsky  In the other direction
 S. S. Demidov  A brief survey of the literature on the development of mathematics in the USSR
 S. S. Demidov  Bibliography (Russian)
Quantum : The Magazine of Math and Science
A. N. Kolmogorov cofounded in 1970 and was First Deputy EditorinChief of the
Russian popular scientific journal for students
'Kvant'.
Current EditorinChief is Yu. A. Osipian
English translation Quantum was published from 1990 to 2001
by the National Science Teachers Association (NSTA).
It was a lively, handsomely illustrated bimonthly magazine of math and science
(primarily physics).
Full texts of many issues of 'Kvant'
is currently avalable from the Russian web site of
MCCME, Moscow Center for Continuous Mathematical Education.
See also
"Math in Moscow"  a program in English for undergraduates and graduate students at the
Independent University of Moscow.
Full texts of A. N. Kolmogorov's articles in Russian journal Kvant (in Russian):
 What is a Function? (1970, N1)
 PhysicsandMathematics Boarding Schools (with V. A. Gusev, A. A. Egorov, and E. L. Surkov, 1970, N1)
 What is the Graph of a Function? (1970, N2)
 Parquets of Regular Polygones (1970, N3)
 On the Solution of Hilbert's Tenth Problem (with F. Varpahovski, 1970, N7)
 Foreword to the article The Epistemology of Lenin and the Concepts of Mathematics (V. Boltyanski, N. Rozov, 1970, N7)
 SemiLogarithmic and Logarithmic Grids (1973, N3)
 Mathematics as a Profession (1973, N4)
 Useful Book (Review) (1973, N11)
 The Sieve of Eratosthenes (1974, N1)
 Groups of Transformations (1976, N10)
 PhysicsandMathematics Boarding School at the M. V. Lomonosov Moscow State University (with V. V. Vavilov, 1977, N1)
 PhysMath School at MSU  15 Years (with I. T. Tropin and V. V. Vavilov, 1979, N1)
 DialecticalMaterialistic Philosophy in the School Courses of Mathematics and Physics (1980, N4)
 A Path into Mathematics is Open (1993, N5)
Moscow Mathematical Olimpiads
Collected by G. A. Galperin and A. K. Tolpygo (Moscow, Prosveshchenie, 1986)
Edited and with Foreword by A. N. Kolmogorov
Full text (in Russian) is available from the web site
http://www.mccme.ru/freebooks/ilib.htm.
Here it is in DjVu format http://www.mccme.ru/freebooks/djvu/olimp/galperintolpygo.djvu.
Download FREE DjVu Viewer from http://www.djvu.com/.
Algebra and Elements of Analysis (A High School Textbook for 1011 grades)
Edited by A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn, B. M. Ivlev, S. I. Shvatsburg
Published by Prosveshchenie, 2001 (11th Edition)
See also
Algebra
by I. M. Gelfand and A. Shen
Full text (in Russian) of the article by G. V. Pukhova
A. N. Kolmogorov and Summer School at Lake Rubskoye
at web site of the Math Department, Ivanovo State University.
See also full text (in Russian)
An Inroduction to the book 'A Summer School at Lake Rubskoye', Published 1971
by A. N. Kolmogorov, I. G. Zhurbenko, G. V. Pukhova, O. S. Smirnova, S. V. Smirnov.
Theory of Probability and Its Applications
A. N. Kolmogorov founded in 1956 and was EditorinChief of the
Russian journal 'Teoriya Veroyatnostei i ee Primeneniya'.
Current EditorinChief is
Yu. V. Prokhorov who is Kolmogorov's student.
Theory of Probability and Its Applications is a translation of the
Russian journal Teoriya Veroyatnostei i ee Primeneniya,
which contains papers on the theory and application of probability,
statistics, and stochastic processes.
Russian Mathematical Surveys
A. N. Kolmogorov was a founding member of the editorial board of the
Russian journal 'Uspekhi Matematicheskikh Nauk' from 1934 till his death in 1987.
He was EditorinChief from 1946 till 1954 and from 1982 to 1987.
Current EditorinChief is S. P. Novikov
Russian Mathematical Surveys is the English translation of the
Russian bimonthly journal Uspekhi Matematicheskikh Nauk, founded in 1936.
The English language version is a covertocover translation of all the material:
that is, the survey articles, the Communications of the
Moscow Mathematical Society,
and the biographical material.
Portraits of A. N. Kolmogorov by his former student Dima Gordeev (click to enlarge)
Kolmogorov
1
2
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
State of the Art
Kolmogorov Library Project
http://kolmogorov.com/
Moscow Mathematical Society

Conferences

Portraits

Photographs

Bibliography

Journals

Articles

Papers

Books

Works

Students

School

Library
Vladimir I. Arnol'd
David Bohm
Lewis Carroll
S. Chandrasekhar
Jonh H. Conway
Richard Courant
H. S. M. Coxeter
Keith J. Devlin
Paul Dirac
Freeman Dyson
Paul Erdös
Euclid
Leonhard Euler
Enrico Fermi
Richard P. Feynman
George Gamow
Martin Gardner
Carl Friedrich Gauss
Israel M. Gelfand
Vitaly Lazarevich Ginzburg
James Gleick
Richard K. Guy
Stephen Hawking
Werner Heisenberg
David Hilbert
Douglas R. Hofstadter
Ross Honsberger
Felix Klein
Thomas S. Kuhn
Lev Davidovich Landau
Sir Isaac Newton
Roger Penrose
Ivars Peterson
Clifford A. Pickover
George Pólya
Karl R. Popper
Constance Reid
Bertrand Russell
Julian Schwinger
Ian Stewart
Kip S. Thorne
Stanislaw M. Ulam
James Watson
Steven Weinberg
John Archibald Wheeler
Alfred North Whitehead
Ludwig Wittgenstein
A.M. & I.M. Yaglom
Dolciani Mathematical Expositions
Dover Books
Dover Phoenix Editions
Helix Books
Advanced Book Classics
Cambridge Mathematical Library
Cambridge Texts in Applied Mathematics
Classics in Mathematics
History of Mathematics
Princeton Science Library
Princeton Series in Physics
Frontiers in Physics Series
Kolmogorov Library Wish List
FizMatKniga
Springer Mathematics
Springer Synergetics
Graduate Texts in Mathematics
Problem Books in Mathematics
Book List from the Notices of the American Mathematical Society
Amazon.com
FinMath.com
State of the Art
Kolmogorov.pms.ru
Kolmogorov.com